Портативное зарядное устройство своими руками
Портативное зарядное устройство своими руками
В этой статье описана конструкция самодельного портативного зарядного устройства, предназначенного для питания или заряда аккумуляторов плееров, мобильных телефонов и смартфонов, совместимых с интерфейсом USB.
Отличие этого блока питания от себе подобных в том, что он сам управляет своим включением и отключением, как в режиме заряда собственных аккумуляторов, так и в режиме отдачи энергии.
Самые интересные ролики на Youtube
Близкие темы
Где взять мощные недорогие аккумуляторы или как разобрать батарею от ноутбука?
Пролог
На идею постройки этой конструкции меня натолкнул полёт в самолёте Airbus A380, в котором под подлокотником каждого кресла имеется разъём USB, предназначенный для питания USB-совместимых устройств. Но, такая роскошь есть не во всех самолётах, а уж тем более её не найти в поездах и автобусах. А я уже давно мечтаю пересмотреть от начала до конца сериал «Друзья». Так почему бы не убить сразу двух зайцев – посмотреть сериал и скрасить время в пути.
Дополнительным стимулом к постройке данного девайса стало открытие залежей мощных литий-ионными аккумуляторов.
Техническое задание
Портативое Зарядное Устройство (ЗУ) должно обеспечить следующие возможности.
- Время работы в автономном режиме под номинальной нагрузкой, не менее – 10 часов. Литий-ионные аккумуляторы большой ёмкости, как нельзя лучше подходят для этого.
- Автоматическое включение и отключение ЗУ в зависимости от наличия нагрузки.
- Автоматическое отключение ЗУ при критическом разряде аккумулятора.
- Возможность принудительного включения ЗУ при критическом разряде аккумулятора, в случае необходимости. Я полагаю, что в дороге может сложиться такая ситуация, когда аккумулятор портативного ЗУ уже разряжен до критического уровня, но необходимо подзарядить телефон для экстренного звонка. В этом случае, нужно предусмотреть кнопку «Экстренного включения», чтобы использовать всё ещё имеющуюся в аккумуляторе энергию.
- Возможность заряда аккумуляторов портативного ЗУ от сетевого зарядного устройства с интерфейсом Mini USB. Так как зарядное устройство от телефона всё равно всегда берут с собой в дорогу, то можно его использовать и для заряда аккумуляторов портативного БП перед обратной дорогой.
- Одновременный заряд аккумуляторов ЗУ и подзарядка мобильного телефона от одного и того же сетевого зарядного устройства. Так как сетевое зарядное устройство от мобильного телефона не может обеспечить достаточный ток для быстрого заряда аккумулятора портативного ЗУ, то заряд может растянуться на сутки и более. Поэтому, должна быть возможность подключить телефон на заряд прямо во время заряда батареи портативного БП.
Исходя из этого технического задания, было построено портативное ЗУ на литий-ионных аккумуляторах.
Блок схема
Портативное ЗУ состоит из следующих узлов.
- Преобразователь 5 → 14 Вольт.
- Компаратор, отключающий преобразователь заряда при достижении напряжения на батарее литий-ионных аккумуляторов 12,8 Вольт.
- Индикатор заряда – светодиод.
- Преобразователь 12,6 → 5 Вольт.
- Компаратор 7,5 Вольт, отключающий ЗУ при глубоком разряде батареи.
- Таймер, определяющий время работы преобразователя при критическом разряде батареи.
- Индикатор работы преобразователя 12,6 → 5 Вольт – светодиод.
Импульсный преобразователь напряжения MC34063
Долго выбирать драйвер для преобразователя напряжения не пришлось, так как выбирать то было особенно не из чего. На местном радиорынке по разумной цене (0,4$) я нашёл только популярную микросхему MC34063. Сразу купил парочку, чтобы выяснить, возможно ли как-либо принудительно отключить преобразователь, так как в даташите на данный чип такая функция не предусмотрена. Оказалось, что сделать это возможно, если подать на вывод 3, предназначенный для подключения частотозадающей цепи, напряжение питания.
На картинке типовая схема понижающего импульсного преобразователя. Красным отмечена цепь принудительного отключения, которая может понадобиться для автоматизации.
В принципе, собрав такую схему, уже можно запитать телефон или плеер, если, например, питание будет осуществляться от обычных элементов питания (батареек).
Я не буду подробно описывать работу этой микросхемы, но из «Дополнительных материалов» вы можете скачать и подробное описание на русском языке, и небольшую портативную программу для быстрого расчёта элементов повышающего или понижающего преобразователя, собранного на этой микросхеме.
Узлы управления зарядом и разрядом литий-ионной батареи
При использовании литий-ионных батарей, желательно ограничивать их разряд и заряд. Я для этой целей использовал компараторы на основе копеечных микросхем КМОП. Микросхемы эти крайне экономичны, так как работают на микротоках. На входе у них стоят полевые транзисторы с изолированным затвором, что даёт возможность применить микротоковый же Источник Опорного Напряжения (ИОН). Где взять такой источник я не знаю, поэтому воспользовался тем обстоятельством, что в режиме микротоков, напряжение стабилизации обычных стабилитронов снижается. Это позволяет управлять напряжением стабилизации в некоторых пределах. Так как это не задокументированное включение стабилитрона, то, возможно, для обеспечения определённого тока стабилизации, стабилитрон придётся подобрать.
Чтобы обеспечить ток стабилизации, скажем, 10-20 мкА, сопротивление балласта должно быть в районе 1-2 МОм. Но, при подгонке напряжения стабилизации, сопротивления балластного резистора может оказаться, либо слишком маленьким (несколько килоом), либо слишком большим (десятки мегаом). Вот тогда придётся подобрать не только сопротивление балластного резистора, но и экземпляр стабилитрона.
Переключение цифровой КМОП микросхемы происходит тогда, когда уровень входного сигнала достигает половины напряжения питания. Поэтому, если запитать ИОН и микросхему от источника, напряжение которого требуется измерить, то на выходе схемы можно получить сигнал управления. Ну, а этот самый сигнал управления и можно подать на третий вывод микросхемы MC34063.
На чертеже изображена схема компаратора на двух элементах микросхемы К561ЛА7.
Резистор R1 определяет величину опорного напряжения, а резисторы R2 и R3 гистерезис компаратора.
Узел включения и идентификации зарядного устройства
Чтобы телефон или плеер начал заряжаться от разъёма USB, ему нужно дать понять, что это разъём USB, а не какой-то суррогат. Для этого можно подать на контакт «-D» положительный потенциал. Во всяком случае, для Blackberry и iPod-а этого достаточно. Но, моё фирменное зарядное устройство подаёт положительный потенциал ещё и на контакт «+D», поэтому я поступил точно так же.
Другое назначение этого узла – управление включением и выключением преобразователя 12,6 → 5 Вольт при подключении нагрузки. Эту функцию выполняют транзисторы VT2 и VT3.
В конструкции портативного ЗУ предусмотрен и механический выключатель питания, но его назначение скорее соответствует "выключателю массы" АКБ в автомобиле.
Электрическая схема портативного блока питания
На рисунке представлена схема мобильного блока питания.
C1, C3 = 1000µF
C2, C6, C10, C11, C13 = 0,1µF
C4, C5 = 680pF
C7 = 3000µF
C8 = 10nF
C14 = 20µF (танталовый)
IC1, IC2 – MC34063
DD1 = К176ЛА7 | R3, R12 = 1k | R27 = 44M |
DD2 = К561ЛЕ5 | R4, R7 = 300k | R28 = 3k |
FU = 1A | R5 = 30k | VD1, VD2 = 1N5819 |
HL1 = Green | R6 = 0,2Ом | VD3, VD6 = КД510А |
HL2 = Red | R8, R15, R23, R29 = 100k | VT1, VT2, VT3 = КТ3107 |
L1 = 50mkH | R10, R11, R13, R26 = 1М | VT4 = КТ3102 |
L2 = 100mkH | R16, R24 = 22М | Подбираются |
R0, R21 = 10k | R17, R19, R25 = 15k | R14* = 2М |
R1 = 180Ом | R18 = 5,1М | R22* = 510k |
R2 = 0,3Ом | R20 = 680Ом | VD4*, VD5* = КС168А |
Назначение узлов схемы.
IC1 – повышающий преобразователь напряжения 5 → 14 Вольт, который служит для заряда встроенной аккумуляторной батареи. Преобразователь ограничивает входной ток на уровне 0,7 Ампера.
DD1.1, DD1.2 – компаратор заряда батареи. Прерывает заряд по достижению 12,8 Вольт на батарее.
DD1.3, DD1.4 – генератор индикации. Заставляет мигать светодиод во время заряда. Индикация сделана по аналогии с зарядными устройствами Nikon. Пока идёт заряд, светодиод мигает. Заряд окончен – светодиод горит постоянно.
IC2 – понижающий преобразователь 12,6 → 5 Вольт. Ограничивает выходной ток на уровне 0,7 Ампера.
DD2.1, DD2.2 – компаратор разряда батареи. Прерывает разряд батареи при снижении напряжения до 7,5 Вольт.
DD2.3, DD2.4 – таймер экстренного включения преобразователя. Включает преобразователь на 12 минут, даже если напряжение на батарее упало до 7,5 Вольт.
Тут может возникнуть вопрос, почему выбрано такое низкое пороговое напряжение, если некоторые производители не рекомендуют допускать его снижение ниже 3,0 и даже 3,2 Вольта на банке?
Я рассуждал так. Путешествия случаются не так часто, как этого бы хотелось, поэтому батарее вряд ли придётся пережить много циклов заряда-разряда. Между тем, в некоторых источниках, описывающих работу литий-ионных батарей, напряжение 2,5 Вольта как раз называют критическим.
Но, Вы можете ограничить предельный разряд более высоким уровнем напряжения, если предполагается часто использовать подобное зарядное устройство.
Конструкция и детали
Выражаю благодарность Сергею Соколову за помощь в поиске компонентов конструкции!
Печатные платы (ПП) изготовлены из фольгированного стеклотекстолита толщиной 1мм. Размеры ПП выбраны исходя из размеров приобретённого корпуса.
Все элементы схемы, кроме аккумуляторной батареи, размещены на двух печатных платах. Причём на меньшей расположен только разъём Mini USB для подключения внешнего зарядного устройства.
Узлы БП были помещены в стандартный полистироловый корпус Z-34. Это самая дорогая деталь конструкции, за которую пришлось выложить 2,5$.
Выключатель питания поз.2 и кнопка принудительного включения поз.3 спрятаны заподлицо с внешней поверхностью корпуса, во избежание случайного нажатия.
Разъём Mini USB выведен на заднюю стенку корпуса, а разъём USB поз. 4 вместе с индикаторами поз. 5 и поз.6 на переднюю.
Размер печатных плат рассчитан так, чтобы зафиксировать аккумуляторы в корпусе портативного БП. Между аккумуляторами и другими элементами конструкции вставлена прокладка из электрокартона толщиной 0,5мм, согнутая в виде коробки.
This movie requires Flash Player 9
|
||
А это портативный БП в собранном виде. Потяните изображение мышкой, чтобы рассмотреть БП с разных сторон.
Настройка
Настройка портативного зарядного устройства свелась к подбору экземпляров стабилитронов и сопротивлений балластных резисторов для каждого из двух компараторов.
Как подогнать резисторы с высокой точностью описано здесь.
Как это работает? Видеоиллюстрация.
В трёхминутном видеоролике показано, как работает эта самоделка и что находится внутри. Формат видео – Full HD.
Дополнительные материалы
- Четёж печатной платы поратативного заряжного устройства в формате Sprint Layout (50КБ).
- Последнюю версию поративной программы с русскоязычным интрефейсом Sprint Layout можно скачать отсюда.
- О том, как современные девайсы распознают зарядные устройства.
Скачать даташит на микросхему MC34063 и её аналог КР1156ЕУ5 на русском языке (50КБ).
Скачать портативную программу для расчёта параметров преобразователя MC34063 (60КБ).
Непонятно назначение R10, ведь потенциал на разъем подается через переход транзистора и R11?
Dostuk, резистор R10 определяет предельное значение тока, который может течь от аккумулятора в шину разъёма USB и обратно.
Было превышено максимальное количество сообщений, поэтому продолжение обсуждения перенесено сюда>>>