Как снизить напряжение на синхроконтактах лампы-вспышки?
Как снизить напряжение на синхроконтактах лампы-вспышки?
Очень короткая статья о том, как снизить напряжение на синхроконтактах лампы-вспышки для согласования с горячим башмаком (Hot Shoe) цифровой камеры.
Большинство старых ламп-вспышек и вспышек наиболее низкой ценовой категории имеют высокое напряжение на синхроконтактах. Это напряжение может достигать 400 Вольт, а пиковое значение коммутируемого тока нескольких Ампер. https://oldoctober.com/
В то же время, в сопроводительной документации современных цифровых камер не приводится полная информация о предельных значениях напряжения и коммутируемого тока цепей синхронизации.
Самые интересные ролики на Youtube
О причинах ошибок при измерении напряжения на синхроконтактах и о том, как правильно произвести такие измерения, подробно написано здесь.
Существует и совсем не бюджетное решение этой проблемы – применение специального адаптера – переходника.
Чтобы обезопасить цепи синхронизации ЦФК, можно снизить подводимое к синхроконтактам напряжение и уменьшить коммутируемый ток при помощи простой схемы, которую можно разместить внутри корпуса лампы-вспышки. Ключевым элементом такой схемы обычно выступает тиристор.
Тиристоры. Цоколёвка (распиновка).
Ниже перечисленные тиристоры могут коммутировать синхроимпульсы практически любых ламп-вспышек. Все они удерживают напряжение 400 и более Вольт и обеспечивают пиковые значения тока в 8 – 10 Ампер. Чувствительность этих тиристоров достаточно высока и составляет 5-10mA.
Цоколёвка широко распространённых тиристоров, которые можно использовать для управления цепями запуска лампы вспышки. https://oldoctober.com/
Тип прибора | Катод | Управ. | Анод |
BT169D(E, G) | 1 | 2 | 3 |
CR02AM-8 | 3 | 1 | 2 |
MCR100-6(8) | 1 | 2 | 3 |
Схема снижения напряжения на синхроконтактах.
VS1 – BT169D
C1 – 0,1-0,22 μF
R1 – 10kΩ
R2 – 500Ω
R3 – 22MΩ
R4*– 1MΩ
Описание работы схемы.
Резисторы R3 и R4 составляют делитель напряжения, от которого заряжается конденсатор C1. При этом верхняя обкладка получает положительный заряд.
При замыкании синхроконтактов ЦФК, ток разряда конденсатора C1 течёт по цепи: верхняя обкладка конденсатора, резистор R2, синхроконтакты ЦФК, управляющий электрод тиристора VS1, катод тиристора VS1, нижняя обкладка конденсатора С1. После чего тиристор отпирается и коммутирует синхроконтакты лампы-вспышки. Когда ток, протекающий через тиристор, становится меньше тока удержания, тиристор запирается.
Величина резистора R3 выбрана столь большой для того, чтобы снижение напряжения на запускающем конденсаторе импульсной лампы (расположен внутри ламы-вспышки) не стало причиной нестабильного запуска последней.
Резистор R1 предотвращает самопроизвольное открытие и повреждение тиристора.
Резистор R2 ограничивает ток управляющего электрода тиристора и ток протекающий через синхроконтакты ЦФК.
Чтобы не возникло необходимости в подборе резистора R4, его можно заменить эквивалентом микротокового стабилитрона на биполярном транзисторе. Правда, при этом, схема станет не такой компактной.
Схема понижения напряжения с эквивалентом стабилитрона.
VS1 – BT169D
C1 – 0,1-0,22 μF
R1 – 10kΩ
R2 – 500Ω
R3 – 22MΩ
VT1 – КТ3102
На обратно включенном эмитерном переходе транзистора VT1 будет падать около 8-ми Вольт.
Монтаж.
Если придать схеме минимальные размеры, то её можно с успехом разместить внутри лампы-вспышки, установив в разрыв синхроконтактов. Для этого желательно выбрать компоненты схемы размером поменьше.
Элементы схемы можно собрать, так называемым, воздушно-навесным монтажом.
Если прямо из выводов элементов схемы сформировать колечки, то в последствие в них можно впаять соединительные провода.
Для надёжности можно покрыть схему слоем клея, герметика или низкотемпературного полиэтилена.
Чтобы зафиксировать схему в одной из пустот корпуса лампы-вспышки, можно вставить её в «кармашек» вырезанный из кусочка поролона подходящего размера. Размер поролона на картинке 20х20х10мм.
При подключении следует учитывать полярность выводов синхронизации. Центральный контакт ламы-вспышки и центральный контакт «Горячего башмака» камеры подключаются к плюсу.
Техника безопасности.
При наладке схемы следует иметь в виду, что на элеменах схемы лампы-вспышки присутствует опасное для жизни напряжение, которое сохраняется в заряженных конденсаторах и после отключения лампы-вспышки от источника питания!
Чтобы разрядить накопительный конденсатор лампы-вспышки нужно замкнуть контакты самого большого электролитического конденсатора через резистор сопротивлением 20 – 100Ω мощностью 10 – 20W.
Чтобы разрядить запускающий конденсатор достаточно просто замкнуть синхроконтакты.
Близкие темы.
Измерение напряжения на синхроконтактах лампы вспышки.
Синхронизация вспышки в фотографии FAQ.
Володя, шунтирующий конденсатор в вашем случае не требуется. Это ясно их вашего сообщения. Не срабатывать вспышка может по массе причин. Одна из них — утечка в накопительном конденсаторе С3. Попробуйте его отформовать, подержав под напряжением 2-3 часа. Только во время формования не оставляйте вспышку без присмотра. Конденсатор может перегреться.
Внешний вид пожигающих электродов — не показатель. У них может быть большое омическое сопротивление или обрыв. Даже если этих дефектов нет, через полгода использования ламп они появятся.
Формовка конденсатора не помогла, хотя не была лишней. Перекинул лампы местами во вспышках и обнаружил что все-таки не поджигается из-за лампы. Если намотать электрод проволокой хуже не будет, заработает ли? Что бы не жалко потраченного времени было. И еще, можно ли вместо BT169D использовать SMD симистор MAC97A6 и надо ли для этого адаптировать схему?
Выше уже отвечал.
Сравните по даташитам. Я их не использовал.
Огромное спасибо за информацию! Все получилось! Сто лет не паял, а тут, думаю, надо попробовать, здорово, когда что-то делаешь своими руками! Очень большой профи архив 80х годов, теперь можно заняться оцифровкой. Еще раз спасибо!
Рад что смог чем-то помочь!